Abstract

Hydroxyethyl cellulose/nanolignin composite films were prepared and characterized. The composite films were produced via casting of synthesized nanolignin added to hydroxyethyl cellulose at different concentrations (2.5%, 5%, 10%, and 20% by mass). A control film without nanolignin was also prepared for comparison. The thermal properties of the composite films were examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), while the mechanical properties were determined by tensile testing and the surface properties were determined by water contact angle measurements. In addition, the morphologies of the samples were examined by scanning electron microscopy (SEM). It was observed that with the addition of nano lignin, the glass transition temperature of the composite films increased from 109 °C to 262 °C; the elongation at break increased from 19% to 51%; and the contact angles increased from 53 °C to 73 °C. The results showed that the presence of nanolignin produced materials being more flexible and more hydrophobic with higher glass transition temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.