Abstract

Hydrogenated microcrystalline silicon (μc-Si∶H) films with high crystalline volume fraction were deposited using a novel hot wire assisted microwave electron cyclotron resonance-chemical vapor deposition (HW-MWECR-CVD) system. The Raman scattering spectrum and X-ray diffraction measurements were carried out to characterize the microstructure of the films. It was shown that, in a wide range of silane dilution ratio, all the deposited films had high crystalline volume fractions. The transition phase from amorphous to microcrystalline silicon was more easily grown with higher silane dilution ratio, which was attributed to the higher ionization and decomposition of the source gases in HW-MWECR-CVD system than in other systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call