Abstract
AbstractHybrid organic–inorganic coatings and free‐standing films were prepared and characterized. The hybrids were prepared from [3‐(glycidyloxy)propyl]trimethoxysilane, diethoxy[3‐(glycidyloxy)propyl]methylsilane, poly(oxypropylene)s of different molecular weights end‐capped with primary amino groups (Jeffamines D230, D400, and T403), and colloidal silica particles with hydrochloric acid as a catalyst for the sol–gel process and water/propan‐2‐ol mixtures as solvents. The structure evolution during the network formation was followed by NMR spectroscopy and small‐angle X‐ray scattering; the surface morphology was tested by atomic force microscopy. The influence of the reaction conditions (the organosilicon precursor, oligomeric amine, ratio of functional groups, and method of preparation) on the network buildup and product properties was studied and examined. The mechanical testing, based on stress–strain experiments, in combination with dynamic mechanical thermal analysis served as an effective instrument for the optimization of the reaction conditions for the preparation of products with desired properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 937–950, 2004
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.