Abstract

Prior to crosslinking and vulcanization, fluorosilicone rubber is a linear polymer. This linear polymer contains 3,3,3,-trifluoropropyl methyl siloxane links, a few methyl vinyl siloxane links, and is formed by co-polymerization of 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl) cyclotrisiloxane (D3F) with 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (V4) under alkaline conditions. To improve the performance of fluorosilicone rubber, three key points should be considered during the synthesis of vinyl-containing high-molecular-weight linear fluorosilicone polymers (fluorosilicone raw rubber): first, avoid the generation of low molecular weight equilibrium by-products; second, eliminate the influence of impurities; and third, increase the copolymerization participation rate of monomer V4. From the three aspects above, this study optimized the reaction conditions for the synthesis of high-molecular-weight linear fluorosilicone polymers containing vinyl. Various factors influencing polymerization were thoroughly investigated. These factors include the initiation system, accelerator, equilibrium reaction, feeding ratio, feeding sequence, neutralization mode, impurity content, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call