Abstract

We report the PCDTBT {Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]}, an alternating copolymer of 2,7-carbazole and dithienyl-2,1,3-benzothiazole, has high molecular weight and narrow molecular weight distribution. Our PCDTBT can be successfully prepared as good yield by using tetrakis(triphenylphosphine)palladium [Pd(PPh3)4] catalyst instead of Pd2dba3/P(o-Tol)3 catalyst. From the UV/Vis absorption spectroscopy, we can observe that absorption bands of PCDTBT are bathochromically shifted by increasing the molecular weight, that is to say, our high molecular weight PCDTBT can absorb much longer wavelength light compare to low molecular weight PCDTBT. The best performance can be obtained from device based on the mixture of PCDTBT (polymer-30) and PC70BM {[6,6]-phenyl C71-butyric acid methyl ester} (1:4) as an active layer, which shows 4.50% of PCE with 10.1 mA/cm2 of short-circuit current density (J(SC)), 0.85 V of open-circuit voltage (V(OC)), and 52.3% of fill factor which is very similar with Leclerc's published result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.