Abstract

ABSTRACTMicroparticles containing heparin were prepared by a water-in-oil-in-water emulsification and evaporation process with pure or blends of biodegradable (poly-ϵ-caprolactone and poly(d,l-lactic-co-glycolic acid)) and of positively-charged non-biodegradable (Eudragit® RS and RL) polymers. The influence of polymers and some excipients (gelatin A and B, NaCl) on the particle size, the morphology, the heparin encapsulation rate as well as the in vitro drug release was investigated. The diameter of the microparticles prepared with the various polymers ranged from 80 to 130 µm and was found to increase significantly with the addition of gelatin A into the internal aqueous phase. Microparticles prepared with Eudragit RS and RL exhibited higher drug entrapment efficiency (49 and 80% respectively), but lower drug release within 24 h (17 and 3.5% respectively) than those prepared with PCL and PLAGA. The use of blends of two polymers in the organic phase was found to modify the drug entrapment as well as the heparin release kinetics compared with microparticles prepared with a single polymer. In addition, microparticles prepared with gelatin A showed higher entrapment efficiency, but a significant initial burst effect was observed during the heparin release. The in vitro biological activity of heparin released from the formulations affording a suitable drug release has been tested by measuring the anti-Xa activity by a colorimetric assay with a chromogenic substrate. The results confirmed that heparin remained unaltered after the entrapment process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.