Abstract

In this study, a comprehensive investigation on the performance of laminated electrodes for hydrogen evolution reaction (HER) is conducted using experiments and numerical simulation. A laminated composite electrode with superior catalytic activity is designed, synthesized and tested, which is comparably researched with traditional homogeneous electrodes. A Ti/Cu laminated electrode with a slot width of 250 µm is fabricated by explosive welding and an electrochemical corrosion process is applied to create groove-shaped interface. The results show that the grooved laminated electrode has superior hydrogen precipitation performance and conductivity, exceptional stability, and minimal potential fluctuation. Hydrogen production efficiency of laminated electrode is 120% higher than that of Cu electrode, which is verified in our self-made hydrogen-making device. COMSOL simulation results were found to be consistent with the experimental findings. Overall, this study provides valuable insight into enhancing electrode performance, with broad engineering implications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call