Abstract

ABSTRACTA novel method of grafting styrene onto linear low‐density polyethylene (LLDPE) by suspension polymerization was systematically evaluated. Cyclohexane as a compatibilizer was introduced to swell and activate the surface of LLDPE molecular chain for amplifying the contact point of styrene monomer with LLDPE. A series of copolymer of grafting polystyrene (PS) onto LLDPE, known as LLDPE‐g‐PS, were prepared with different ratios of cyclohexane/styrene monomer and various LLDPE dosages. FTIR and 1H NMR techniques both confirmed successful PS grafting onto the LLDPE chains. In addition, SEM images of LLDPE‐g‐PS particles showed that the cross‐section morphology becomes smooth and dense with suitable cyclohexane dosages, indicating a better compatibility between LLDPE and PS. The highest grafting efficiency was 28.4% at 10 mL/g cyclohexane and styrene monomer when 8% LLDPE was added. In these conditions, the LLDPE‐g‐PS elongation at break increased by about 30 times compared with PS. Moreover, thermal gravimetric analysis (TGA) demonstrated that LLDPE‐g‐PS possesses much higher thermal stability than pure PS. Therefore, the optimal amount of cyclohexane as compatibilizer could increase the grafting efficiency and improve the toughness of PS. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41671.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call