Abstract

A novel method for the preparation of radio frequency (RF) wave absorber polyurethane foam (PU) has been developed by impregnation of PU foam in n-hexane solution of room temperature vulcanizing (RTV) silicone rubber (SR) hybridized with graphite nanosheets (GNs) called doping solution. Extent of the GNs dispersion was optimized by the incorporation of a specific type of bifunctional compatibilizer. Insulator to conductive transition threshold as well as electromagnetic wave absorption characteristics of the fabricated nanocomposites was shown to be dependent upon the compatibilizer functionality. All PU/SR/GN nanocomposites generated from bifunctional compatibilizer exhibited higher electrical conductivity with enhanced permittivity implying enhanced formation of conductive networks by GN platelets. Permittivity of the PU/SR/GN nanocomposite based on bifunctional compatibilizer showed to be higher than uncompatibilized counterpart. Electromagnetic reflection loss behavior of the PU/SR/GN nanocomposites exhibited a non-linear correlation with the electrical conductivity. Although all PU/SR/GN prepared nanocomposites exhibited electromagnetic wave reflection loss behavior, but this revealed to be affected by the GN level as well as the size and dispersion state of the graphite nanosheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.