Abstract
Purpose Fluorine materials have received the keen attention of many researchers because of their water repellency and low surface free energy. The purpose of this paper is to prepare fluorine-containing soap-free acrylic emulsion, which sodium allyoxypropyl hydroxypropyl sulfonate (COPS-1) and anionic emulsifier sodium a-alkenyl sulfonate (a-AOS) were combined as polymerizable emulsifier, and undecylenic acid (UA) and dodecafluoroheptyl methacrylate(DFMA) were introduced as functional monomer. Design/methodology/approach The fluorinated polyacrylate emulsion was successfully prepared by semi-continuous seed emulsion polymerization, wherein the main monomers were methyl methacrylate (MMA) and butyl methacrylate (BA), and the initiator was potassium persulfate (KPS). Sodium alloxypropyl sulfonate (COPS-1) and an anionic emulsifier sodium a-alkenyl sulfonate (a-AOS) were compounded as a polymerizable emulsifier. Besides, undecylenic acid (UA) and dodecafluoroheptyl methacrylate (DFMA) were introduced as the functional monomers. Findings The optimum recipe of preparing the modified latex is as follows: the amount of emulsifier was 4%, the ratio of emulsifier (COPS-1: AOS) was 3: 1, and the content of initiator was 0.6%. In this case, the conversion rate of acrylic polymer emulsion was high and the polymerization stability was good. When the amount of monomer UA was 2% and the amount of DFMA was 4%, the overall performance of the emulsion was the best. Originality/value The fluorine-containing soap-free acrylic emulsion is prepared via semi-continuous seeded emulsion polymerisation, which sodium allyoxypropyl hydroxypropyl sulfonate (COPS-1) and anionic emulsifier sodium a-alkenyl sulfonate (a-AOS) were combined as polymerizable emulsifier, and undecylenic acid (UA) and dodecafluoroheptyl methacrylate (DFMA) were introduced as functional monomer. There are two main innovations. One is that the fluorine-containing soap-free acrylic emulsion is prepared successfully. The other is that the undecylenic acid is introduced as functional monomer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.