Abstract
In this study, ferulic acid-modified water soluble chitosan and poly (γ-glutamic acid) polyelectrolyte multilayers films were constructed through the layer-by-layer (LBL) self-assembly technique. Chitosan (CS) or ferulic acid modified chitosan (MCS) and Poly (γ-glutamic acid) (PGA) was alternately deposited on the surface of glass substrate for the enhancement of surface modification. The obtained films were characterized by Fourier transform spectroscopy (FTIR), X-ray diffractometry (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy and water contact angle to study its physico-chemical properties including protein absorption. The (PGA/MCS) films showed intense deposition of multilayers built upon the surface roughness and an increase in the exponential growth of multilayer films by UV–vis spectroscopy. Water contact angle indicated that the (PGA/MCS) films performed well with good wettability due to the increase in the number of layers. The LBL multilayer coatings of (PGA/MCS) films surface possessed a reduced amount of protein adsorption. These results indicated that it can resist the protein adsorption and can enhance the biocompatibility towards the biomedical application through the protein interaction. The (PGA/MCS) films has the potential to utilization as a good biomaterial for biomedical purposes to intensify the bio-active surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.