Abstract

Crack-free mesoporous equimolar SiO2–Al2O3–TiO2 ternary aerogel beads have been synthesized and characterized. Silica sol, alumina sol, and titania sol were synthesized individually to prevent the formation of inhomogeneous structure due to the different hydrolization and polymerization rate of individual precursor. After mixing these three types of acidic sols, SiO2–Al2O3–TiO2 ternary beads were prepared by the ball dropping method. The ternary aerogel beads were typically mesoporous, showing high surface area (305 m2 g−1), large pore volume (1.32 cm3 g−1), and high surface acid amount (0.884 mmol NH3 g−1). Moreover, the acid sites of the ternary aerogel beads showed higher thermal stability than those of binary aerogel beads. Gradient drying (GD), supercritical drying (SD), ambient drying (AD), extended aging (EA) and hydrophobic modifying drying (HM) have been employed to investigate the effects of drying method on the characteristics of the aerogel beads. The surface areas of the ternary aerogel beads obtained by different drying methods decrease in the sequence EA > HM > GD > SD > AD. The ternary aerogel beads have been characterized by scanning electron microscopy, nitrogen adsorption, X-ray powder diffraction, Fourier-transform infrared spectroscopy (FTIR), solid-state NMR, temperature-programmed desorption measurements, pyridine adsorption FTIR, and differential scanning calorimetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.