Abstract

A series of flexible and tough polyimide (PI) microfibrous mats (PI-1~PI-4) have been prepared via the one-step electrospinning procedure with the organo-soluble PI resins as the starting materials. For this purpose, four PI resins were first synthesized by the chemical imidization reaction from 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and four aromatic diamines containing rigid-rod moieties in their molecular skeletons, respectively. The PI resins derived from 6FDA and aromatic diamines, including PI-1 from 2-(4-aminophenyl)-5-aminobenzimidazole (APBI), PI-2 from 2-(4-aminophenyl)-5-aminobenzoxazole (APBO), PI-3 from 4,4′-diaminobenzanilide (DABA), and PI-4 from 2-chloro-4,4-diaminobenzanilide (Cl-DABA) exhibited good solubility in polar aprotic solvents, such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc). Flexible and tough microfibrous mats were successfully prepared by a one-step electrospinning procedure from the PI/DMAc solution (solid content: 15–20 wt%; absolute viscosity: 8000–10000 mPa·s). The derived PI mats exhibited good whiteness according to the CIE Lab measurements with W (whiteness) values as high as 94.31, L (lightness) values higher than 94.00, b* (yellowness) values as low as 2.98 and yellow indices (YI) as low as 4.87. In addition, the prepared PI mats exhibited excellent thermal and dimensional stability with the glass transition temperatures (Tg) higher than 345 °C and linear coefficients of thermal expansion (CTE) as low as 27.8×10-6 /K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.