Abstract
Well-aligned undoped and Co-doped nanorod ZnO films were grown by electrochemical deposition onto p-Si substrates from an aqueous route. Aqueous solution of Zn(NO3)2⋅6H2O and hexamethylenetetramine (HMT) were prepared using triple distilled water. Two different atomic ratios of Co(NO3)2⋅6H2O were used as a dopant element. Electrodepositions were carried out in a conventional three electrode cell for the working electrode (p-Si), reference electrode (Ag/AgCl, sat.) and counter electrode (platin wire). The effects of Co doping on the structural, morphological and electrical properties of ZnO films were investigated. X-ray diffraction (XRD) measurement showed that the undoped ZnO nanorod film was crystallized in the hexagonal wurtzite phase and presented a preferential orientation along the c-axis. Only one peak, corresponding to the (002) phase, appeared on the diffractograms. The lattice parameters and texture coefficient values were calculated. The nanorods were confirmed by the field emission scanning electron microscopy (FE-SEM) measurements. The FE-SEM image showed that the ZnO nanorods grow uniformly on the substrates, providing a surface with fairly homogeneous roughness. The surface morphology was transformed into uniform multi-oriented rods with incorporation of Co. Co-doped ZnO nanorod films showed a multi-oriented spear-like structure. The diffuse reflectance spectra of the films were measured and the optical band gap values were determined using Kubelka–Munk theory. The van der Pauw method was used to measure the sheet resistance of the films. The sheet resistance was affected significantly by Co content. The pn heterojunction diodes were fabricated and the diode parameters were determined from the analysis of the measured dark current–voltage curves. Rectifying behavior was observed from the I–V characteristics of these heterojunction diodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.