Abstract

To ensure the high quality of water, it is necessary to remove toxic pollutants. At present, purification of water is implemented using various sorbents. The efficient sorption materials are modified polysaccharides. In this study, we report on a new environmentally friendly method for modifying larch hemicellulose-arabinogalactan (AG)-with polybasic carboxylic acids (citric, succinic, oxalic, and adipic) to obtain composite materials. The synthesized AG derivatives have been explored by a complex of physicochemical methods, including gel permeation chromatography (GPC), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffractometry (XRD), scanning electron microscopy (SEM), and sorption capacity investigations. It is shown that the heat treatment results in the formation of additional inter- and intramolecular bonds between carboxylic acids and polysaccharide molecules. The formation of ester bonds has been confirmed by the appearance of absorption bands in the IR spectra in the range of 1750-1690 cm-1. It has been found, using the TGA study, that the most thermally stable (up to 190 °C) sample is arabinogalactan oxalate obtained under heat treatment. The SEM study of the synthesized AG films has shown that the modified samples have the homogeneous film surface ensured by cross-linking. It has been established, when studying the sorption properties of the AG derivatives, that AG succinate (82.52%) obtained by lyophilization has the highest sorption capacity, due to the developed mesoporous surface, which, in turn, makes the synthesized films promising eco-friendly materials for use as drug carriers, sorbents, and water treatment agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.