Abstract

In the present study, Cu-doped (1, 2, 5 and 10wt.%) TiO2 thin films were prepared on silicon wafers via sol–gel method and dip coating process. The prepared thin films were thermally treated at 450°C for 1h with a heating rate of 2°C/min. The microstructures of synthesized thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), water contact angle measurement (WCA), and X-ray photoelectron spectroscopy (XPS). XRD results showed that the as-prepared thin films were mainly in anatase phase. XPS analysis indicated that Cu2O transformed into CuO with increasing content of copper.Such doped surfaces showed the ability of catalytic decomposition of exogenous donor S-nitroso-N-acetyl-penicillamine (SNAP) to generate nitric oxide (NO). Based on SEM and fluorescence analysis results, such films had the ability to inhibit platelet adhesion and activation with SNAP in vitro. This study suggested that the films were capable of generating physiological levels of NO in the presence of endogenous donor S-nitrosothiols (RSNO) when in contact with blood. So the films may be useful to improve the hemocompatibility of blood contact devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.