Abstract

Flexible nanocomposite thick films consisting of PVA0.7PANi0.3 polymer blend doped with different concentrations of nanoplatelets functionalized Graphene (NPFGx) (where x = 0, 5, 10, 15, 20, and 25 wt.%) were fabricated using the solution cast technique. Scanning electron microscopy (SEM), X-ray diffractometer (XRD), energy dispersive spectroscopy analysis (EDX), and Fourier-transform infrared spectra (FT-IR) were used to study the structure of the samples. The results showed that the ordered structure, its orientation, the PANis' well dispersion, and the electrostatic forces play a significant role in enhancing the interfaces between the polymer blend and the NPFG. Thermogravimetric analyses (TGA) and Thermoelectrical analyses (TE) showed that the PVA-PANi conducts a promised conjugated blend for thermoelectric applications. The introduction of the NPFG contents into the blend increased the TE measurements as the DC electrical conductivity ≈ 0.0114 (S cm−1), power factor ≈ 3.93 × 10–3 (W m−1 K−2), and Z.T. ≈ 8.4 × 10–7, for the 25 wt.% NPFG nanocomposite film. The effect of the polymers’ phonon contribution in the thermal conductivity controlling and enhancing the thermal stability of the prepared nanocomposite films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call