Abstract

Polyindole (PIn) nanowires were formed on a lambda-DNA template by chemical oxidation of indole using aqueous FeCl3. The resulting nanowires are smooth, regular, conductive and had diameters in the range of 5-30 nm. These features allow them to be aligned by molecular combing and studied by scanned conductance microscopy, conductive AFM, and two-terminal I-V measurements. Using this combination of measurements, we find that the conductivity of PIn/DNA nanowires is between 2.5 and 40 S cm(-1) at room temperature, which is substantially greater than that in previous reports on the bulk polyindole conductivity (typically 10(-2)-10(-1) S cm(-1)). The conductance at zero bias shows an Arrhenius-type of dependence on temperature over the range of 233 to 373 K, and the values observed upon heating and cooling are repeatable within 5%; this behavior is consistent with a hopping mechanism of conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.