Abstract

Biopolymer coated magnetic nanoparticles are becoming extremely popular in the fields of biomedical research because of their enormous applications potentials. In this work, first, CoFe2O4 nanoparticles (CF NPs) of two distinct sizes have been prepared following co-precipitation method by varying the synthesis parameters and characterized. XRD, SAED and IFFT (Inverse Fast Fourier Transformed) assisted HRTEM analyses confirmed the successful formation of monodispersed spinel cubic CoFe2O4 nanoparticles. Particles size of CF NPs was found to increase with increase in the amount of reducing agent. Synthesized CF NPs was coated with an egg albumen matrix by a facile and environmental friendly method to form biocompatible CoFe2O4@Albumen nanocomposite nanoparticle (CF@Alb NP). Prepared CoFe2O4 and CoFe2O4@Albumen nanoparticles were examined for its structure, morphology, thermal stability and magnetic nature employing powder XRD, HRTEM, TGA, FTIR and VSM techniques. Low as well as high magnification TEM analyses have shown coating of amorphous albumen on crystalline CF NPs. It was observed that CF@Alb NP is composed of many smaller CF NPs engulfed in the albumen matrix forming a nano-aggregate of size ∼80–130 nm. IFFT analysis of HRTEM micrograph showed presence of crystalline CF NPs in amorphous albumen matrix. Further, TGA and FTIR results also suggested the successful coating of albumen on CF NPs. CF@Alb NP has shown a very good Dox loading ability with loading efficiency of ∼93%. A promising pH dependent Dox release behavior was observed. Dox release kinetics has also been studied using different mathematical models. Biocompatibility of the CF@Alb NP has been tested against the human monocytic cell line THP-1. This novel CF@Alb NP could have a great potential in biomedical applications, particularly in hyperthermia and targeted drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.