Abstract

Plasticized starch (PLS) is a renewable, degradable, and inexpensive polymer, but it suffers from poor mechanical properties. The mechanical properties can be improved by blending PLS with polyolefins, nonetheless, at high PLS content, the mechanical properties remain poor. Here we show that addition of clay can greatly improve the mechanical properties of PLS/polypropylene blends at high starch content. Unmodified and organically modified montmorillonite clays, MMT and Cloisite 30B respectively, were added to blends of glycerol-plasticized starch and polypropylene, compatibilized using maleated polypropylene. TEM indicates that MMT is well dispersed in the PLS phase of the blends, while Cloisite 30B is located both within the PLS phase as well as at the interface between PLS and PP. At high PLS content, the addition of clay increased the tensile strength and tensile modulus by an order of magnitude, while reducing the ultimate elongation only slightly. Such improvements are attributable to both the addition of clay as a reinforcing component, as well as to the change in the two phase morphology due to addition of clay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call