Abstract
Chitosan is a novel biocompatible, biodegradable polymer for potential use in tissue engineering. In this work, chitosan–gelatin/nanophase hydroxyapatite composite scaffolds were prepared by blending chitosan and gelatin with nanophase hydroxyapatite (nHA). The prepared nHA was characterized using TEM, XRD and FT-IR. The prepared composite scaffolds were characterized using SEM, FT-IR and XRD studies. The composite scaffolds were highly porous with a pore size of 150–300 μm. In addition, density, swelling ratio, degradation, biomineralization, cytotoxicity and cell attachment of the composite scaffolds were studied. The scaffolds showed good swelling character, which could be modulated by varying ratio of chitosan and gelatin. Composite scaffolds in the presence of nHA showed a decreased degradation rate and increased mineralization in SBF. The biological response of MG-63 cells on nanocomposite scaffolds was superior in terms of improved cell attachment, higher proliferation, and spreading compared to chitosan–gelatin (CG) scaffold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.