Abstract

The chitosan physical hydrogels formed under gaseous ammonia atmospheres usually have poor mechanical properties and low antibacterial activities, which limit its application as biomaterials. In the current study, CTS-Ag+/NH3 physical hydrogels with great comprehensive properties were prepared by the gelation of chitosan in the presence of AgNO3 under a gaseous ammonia atmosphere. Compared with the previously reported hydrogels made with chitosan and AgNO3, the CTS-Ag+/NH3 hydrogels were more homogeneous and transparent. In addition, the AgNO3 content in the hydrogels was decreased to 0.064–0.424wt.%. The formation mechanism and the influence of reaction conditions on the structures and properties of CTS-Ag+/NH3 physical hydrogels were characterized by FT-IR, SEM, XPS, XRD and rheological measurement. Tensile testing suggested that CTS-Ag+/NH3 physical hydrogels had a higher tensile strength than the CTS/NH3 hydrogel. Moreover, the CTS-Ag+/NH3 physical hydrogels showed excellent antibacterial activities against both gram positive and negative bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.