Abstract
When gelification is performed by freezing-thawing repeated cycles, the resultant gel-like polymer systems are called cryogels. This work aims to assess the effect of the addition of glutaraldehyde and 18 Crown Ether-6 on surface properties and protein loading of dried chitosan cryogel films. Residual water content of treated chitosan membranes ranged between 11.93 and 13.86%, while their water activities vary from 0.5 to 0.7 (measured from 4 to 60 degrees C). Based on thermal data, water evaporation peak and degradation temperatures of chitosan membranes shifted to a higher temperature for crosslinked samples. X-ray diffractograms provide high values of crystallinity for all the samples (70.67-92.86%), the highest value being for the glutaraldehyde-treated membrane. Candida rugosa lipase can be immobilized successfully on chitosan membranes. Lipase immobilized on glutaraldehyde-crosslinked chitosan yielded the highest efficiency in terms of total coupled protein and protein loading efficiency.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.