Abstract

Novel chitosan films incorporating epigallocatechin gallate (EGCG) were prepared and demonstrated the ideal physical and mechanical properties required of candidate food packaging materials alongside desirable antioxidant and antibacterial activity. Compared with traditional chitosan films, chitosan films incorporated with EGCG were thicker, had higher tensile strength and water solubility, and had lower elongation at break, moisture content, degree of swelling, and water contact angles. Although EGCG-containing films were slightly darker in color than pure chitosan films, they exhibited a greater inhibitory effect on light-induced oxidation with obviously improved UV–vis barrier capability and opacity. Scanning electron microscopy results suggested that EGCG-incorporated samples had a rougher surface structure. This was further confirmed by atomic force microscopy and indicated that the addition of EGCG facilitated the formation of protective barriers through the interaction between the film and food surface. FTIR spectroscopy confirmed that EGCG interacted with chitosan by intermolecular hydrogen bonding and effectively improved the thermal stability of chitosan films. Notably, the incorporation of EGCG significantly enhanced the antioxidant and antibacterial activity of chitosan films. Hence, chitosan films incorporating EGCG have potential applications in the food industry as a novel active packaging material, especially in preventing food oxidation and spoilage in perishable foods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.