Abstract

Two-dimensional transition-metal dichalcogenides (TMDs) had attracted enormous interests owing to their extraordinary optical, physical, and chemical properties. Herein, we prepared for the first time a series of chiral TMD quantum dots (QDs) from MoS2 and WS2 bulk crystals by covalent modification with chiral ligands cysteine and penicillamine. The chiral TMD QDs were carefully investigated by spectroscopic and microscopic techniques. Their chiral optical activity was confirmed by distinct circular dichroism signals different to those of the chiral ligands. Interestingly, with the assistance of copper ions, the chiral QDs displayed strong and chiral selective peroxidase-like activity. Up to now, inorganic nanomaterials with peroxidase-like activity were tremendous but seldom examples with enantioselectivity. The enantioselectivity of our chiral TMD QDs toward chiral substrates d- and l-tyrosinol was highly up to 6.77, which was almost the best performance ever reported. The mechanisms of enantioselectivity was further investigated by quartz crystal microbalance assays. We believed that because of the extraordinary electronic and optical properties, the chiral TMD QDs should be useful for nonlinear optical materials, asymmetric catalysis, chiral and biological sensors, and so on.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call