Abstract
Charcoals adsorbents that contain dispersed aluminum and iron oxides have been synthesized by impregnating wood with salt solutions followed by carbonization at 500 °C, 650 °C or 900 °C. The adsorbents were characterized and their performance for fluoride removal from aqueous solution was evaluated. Aluminum and iron oxides were well dispersed into the porous charcoals. The carbons were amorphous and highly porous. XRD of the adsorbents showed crystalline iron oxide but did not show any form of crystalline aluminum oxides. All the adsorbents showed acidic surface properties. The efficiency of defluoridation was found to depend on the carbonization temperature, the pH of point of zero charge (pHPZC), and the co-existing ions. Substrates prepared at 650 °C with aluminum and iron oxides exhibited the best efficiency with a fluoride sorption capacity of 13.64 mg g −1. More than 92% removal of fluoride was achieved within 24 h from a 10 mg L −1 solution at neutral pH. Fluoride adsorption kinetic was well fitted by a pseudo-second order model. The amounts of residual Al and Fe in treated solution were pH dependant. At neutral pH, the amounts of dissolved Al and Fe were found to be 0.67 and 1.8 mg L −1, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.