Abstract
Continuous carbon-fibre-reinforced Cs-geopolymer composite (Cf/CsGP) were prepared, and its in-situ conversion was investigated during high-temperature treatments. The effect of treatment temperature on the thermal evolution process and mechanical properties of the resulting products were systematically evaluated. The results indicated that the crystallization temperature of Cf/CsGP composite was considerably delayed because the amorphous structure of carbon fibres was not conducive as a nucleation substrate for pollucite derived from the CsGP matrix. Moreover, the integrity of the corresponding resulting products derived from the Cf/CsGP composite were damaged due to thermal shrinkage that occurred during the high-temperature treatment process. When treatment temperature was ≤1200oC, the mechanical properties of the corresponding products exhibited an upward trend, which was ascribed to the improvement of the densification degree of the resulting composite and well interface-bonding state between carbon fibres and pollucite. However, the mechanical properties of the resulting composites decreased with the treatment temperature continued increased from 1200 to 1400oC. This phenomenon was attributed to the impairment of fibre properties caused by interfacial reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.