Abstract
AbstractIn the present study, the influence of citric acid (CA) on hydrogel films composed of sodium carboxymethylcellulose (NaCMC), hydroxypropylmethylcellulose (HPMC), and CuO nanoflakes was investigated for their physicochemical, mechanical, thermal, and antibacterial properties. XRD patterns showed that the prepared hydrogel films revealed the crystalline phase for CuO/Cu2O/Cu at 20% CA concentration. Laser micro‐Raman spectroscopy confirmed the presence of CuO and Cu2O in the films. Increase in CA concentration decreased the swelling degree and tensile strength and increased the decomposition temperature of NaCMC, HPMC, and CuO. According to FESEM and FETEM results, shape and size of CuO nanoflakes were completely changed into spherical nanoparticles with increase in CA concentration. HRTEM and inverse Fourier transform images showed that the d‐spacing of CuO, Cu2O, and Cu were correlated with XRD results. The prepared hydrogel films exhibited significant antibacterial activity and biocompatibility against HaCaT cells. All these data recommend that the prepared hydrogel films may be used for potential wound healing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.