Abstract

Spent edible fungus substrates were identified as potential sources to produce cellulose derivatives, namely purified cellulose and dicarboxyl cellulose nanocrystal (DCNC). Purified celluloses were obtained via chemical treatments and then oxidized by sequential periodate-chlorite without mechanical process. The structural properties of the DCNCs were characterized by transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). XRD results showed that the cellulose I structure was maintained, however, the crystallinity index decreased after oxidation process. The initial pyrolysis temperature of DCNCs ranged from 242 to 344 °C. TEM results revealed that DCNC was rod-shaped with an average length and width of 130.88 nm and 7.3nm, respectively. The average specific surface area (SSA) was 366.67 m2 g-1 . The carboxyl content was around 3.485 mmol g-1 . Finally, the adsorption capacity for contaminations was 76.98, 126.22, 64.44 and 9.63 mg g-1 for copper ion (Cu2+ ), lead ion (Pb2+ ), chromium (Cr3+ ) and amoxicillin (AMX), respectively. This work showed a sequentially chemical oxidation for preparing nanocellulose from secondary agricultural waste with many functional applications. © 2021 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.