Abstract

The present study is aimed at drawing the synergies by combining the microbial potential of Silver nanoparticles, the medicinally important plant and develop biodegradable nanocomposites. The silver nanoparticles (AgNPs) were in situ generated in Pongamia pinnata leaf extract infused cellulose. The cellulose, the matrix, and the resulting nanocomposite films were characterized. The Fourier transform infrared spectra, confirms that the amide groups present in the leaf extract are responsible for the formation of AgNPs through the reduction process, the energy dispersive X-ray analysis and the scanning electron microscopy revealed that the average AgNPs size is around 76 nm. These cellulose nanocomposites films showed enhanced tensile properties, indicating the reinforcing effect of AgNPs. The antibacterial studies shown good antibacterial activity against Escherichia coli. These studies validate the feasibility of using pinnata leaves for in situ generations of AgNPs in modified cellulose matrix, which makes these nanocomposite suitable for food and medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call