Abstract

Fabrication of Ceftazidime (CTZ) loaded silk fibroin/gelatin (SF/GT) nanofibers (NFs) without the loss of structure and bioactivity of CTZ was demonstrated by electrospinning method. The structure, morphology and mechanical properties of the electrospun SF/GT nanofibrous mats were characterized using FT-IR, SEM and DSC. The drug release profile of different electrospun fibers was analyzed using spectrophotometric method, and also diffusion method was applied to assess the antibacterial effect of NFs. Cell viability was evaluated by MTT assay. The results show that the average diameter of drug loaded NFs at the optimum polymer to drug feeding ratio (10:1) was 276.55±35.8 nm, while increasing the feeding ratio to 1:1 increases the average diameter to 825.02±70.3 nm. FT-IR of drug loaded NFs was revealed that CTZ was successfully encapsulated into NFs while viability study approved cytocompatibility of SF/GT NFs. CTZ was released from NFs during 6 h, and formation of inhibition zone in diffusion test demonstrated the antibacterial effect of drug loaded NFs. Altogether, the CTZ loaded SF/GT NFs can improve the drug effectiveness particularly in the prevention of post-surgical adhesions and infections for wound dressing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call