Abstract

Porous, biodegradable and biocompatible chitosan, chitosan with natural hydroxyapatite derived from Thunnus Obesus bone (chitosan/HAp) and chitosan grafted with functionalized multiwalled carbon nanotube in addition to HAp ( f-MWCNT- g-chitosan/HAp) scaffolds were prepared for the first time via freeze-drying method and physiochemically characterized as bone graft substitutes. The cross-linkages in the novel f-MWCNT- g-chitosan/HAp scaffold were observed by FT-IR spectroscopy. The water uptake, retention ability and degradation of composite scaffolds decreased whereas thermal stability increased with an addition of HAp and f-MWCNT. Uniform dispersion of HAp and f-MWCNT in chitosan matrix with interconnected porosity of 70–200 μm (chitosan/HAp) and 46–200 μm ( f-MWCNT- g-chitosan/HAp) was observed by X-ray diffraction, scanning electron microscopy and optical microscopy. Cell proliferation in composite scaffolds was twice than in pure chitosan when checked in vitro using MG-63 cell line. These observations suggest that the novel chitosan/HAp and f-MWCNT- g-chitosan/HAp composite scaffolds are promising biomaterials for bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.