Abstract

Heat dissipation from electrical appliances is a significant issue with contemporary electrical devices. One factor in the improvement of heat dissipation is the heat transfer performance of the working fluid. In this study, we used plasma arc technology to produce a nanofluid of carbon nanoparticles dispersed in distilled water. In a one-step synthesis, carbon was simultaneously heated and vaporized in the chamber, the carbon vapor and particles were then carried to a collector, where cooling furnished the desired carbon/water nanofluid. The particle size and shape were determined using the light-scattering size analyzer, SEM, and TEM. Crystal morphology was examined by XRD. Finally, the characterization include thermal conductivity, viscosity, density and electric conductivity were evaluated by suitable instruments under different temperatures. The thermal conductivity of carbon/water nanofluid increased by about 25% at 50°C compared to distilled water. The experimental results demonstrated excellent thermal conductivity and feasibility for manufacturing of carbon/water nanofluids.

Highlights

  • As industrial and technological products demand higher standards of function and capacity, the problem of heat dissipation from electrical appliances becomes a significant issue

  • The thermal conductivity of copper and aluminum heat exchangers are quite high, and the addition of precious metal to improve thermal conductivity further would incur a tremendous increase in the heat exchanger cost

  • Electric conductivity, viscosity, and thermal conductivities were measured by a density meter (DA-130N, KEM, Tokyo, Japan), rheology meter (DVIII+, BROOKFIELD, Middleboro, MA, USA), electric conductivity meter (CD-4306, Lutron Electronics Co., Inc., Taipei, Taiwan) respectively, and a thermal property analyzer (KD-2 Pro, Decagon Devices, Inc., Pullman, WA, USA) was used for determination of carbon/water nanofluids properties at various temperatures

Read more

Summary

Introduction

As industrial and technological products demand higher standards of function and capacity, the problem of heat dissipation from electrical appliances becomes a significant issue To ameliorate this problem, there are four approaches commonly taken: (1) enlarge the heat exchanger area and structure, (2) fabricate the heat exchanger using materials with higher thermal conductivity, (3) increase the working fluid flow rate to the heat exchanger, and (4) improve the heat transfer performance of the heat exchange working fluid. There are four approaches commonly taken: (1) enlarge the heat exchanger area and structure, (2) fabricate the heat exchanger using materials with higher thermal conductivity, (3) increase the working fluid flow rate to the heat exchanger, and (4) improve the heat transfer performance of the heat exchange working fluid Of these methods, enlargement of the heat exchanger area has reached a physical limit. We consider that in order to increase heat dissipation, the most feasible approach is to improve the

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.