Abstract
Bioglass Ceramics having molar composition 40SiO2-(44-X)CaO-10MgO-6P2O5-XCaF2 (where X = 0 to 8%) were prepared by conventional melting process in an electric globar furnace at 1400±10°C. Controlled crystallizations were carried out to convert the bioglasses to their corresponding ceramics. Nucleation and crystallization regimes were carried out by differential thermal analysis. The crystalline phases termed hydroxy fluoroapatite, akermanite and wollastonite were identified by using x-ray diffraction analysis. The investigation of bioactivity for the prepared glass and glass ceramics was done by infrared absorption and infrared reflection spectra after immersion in simulated body fluid (SBF) for different periods at 37.8°C. Scanning electron microscope (SEM) analysis was carried out to investigate the surface texture. Micrographs show the formation of HCA layer on the surface of the bioglass ceramics samples after 7 days of SBF treatment. The surfaces of the samples were completely covered with irregular and needle-like aggregates of Ca–P layer. The released ions were estimated by atomic absorption spectroscopy. The chemical durability of these materials was determined by pH measurement methods and it was found that pH of the solution increases up from 1 to 7 days. Further, pH decreases with increasing time period, from 15 to 30 days in SBF solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomimetics, Biomaterials and Tissue Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.