Abstract

This paper reports the potential of chemically treated wood chips to remove copper (II) ions from aqueous solution a function of pH, adsorbent dose, initial copper (II) concentration and contact time by batch technique. The wood chips were treated with (a) boiling, (b) formaldehyde and (c) concentrated sulphuric acid and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive analysis X-ray. pH 5.0 was optimum with 86.1, 88.5 and 93.9 % copper (II) removal by boiled, formaldehyde-treated and concentrated sulphuric acid-treated wood chips, respectively, for dilute solutions at 20 g L−1 adsorbent dose. The experimental data were analysed using Freundlich, Langmuir, Dubinin–Radushkevich and Temkin isotherm models. It was found that Freundlich and Langmuir models fitted better the equilibrium adsorption data and the adsorption process followed pseudo-second-order reaction kinetics. The results showed that the copper (II) is considerably adsorbed on wood chips and it could be an economical option for the removal of copper from aqueous systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.