Abstract

Protein-rich seaweeds are regarded as having commercial significance due to their numerous industrial applications. The green seaweed Halimeda opuntia was used during this study for the preparation of bioplastic film. A thin bioplastic film with better physical and mechanical properties was produced by optimizing the ratio of polyvinyl alcohol (PVA) to seaweed biomass. The films obtained were characterized by their thickness, tensile strength, elongation at break, Young's modulus, moisture absorption resistance, and solubility. To evaluate the composition and potential for chemical reactions of the films, an FTIR spectroscopy examination was conducted. Whereas TG-DTA and AFM were performed on films with high mechanical properties. The bioplastic film produced when algae percent was tripled in PVA concentration had better physical and mechanical characteristics, and the bioplastic films degraded in the environment within a short time. According to the current study, seaweed might serve as an alternative source for the production of bioplastic, which could help minimize the use of non-biodegradable plastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.