Abstract

Tussah silk fibroin (TSF)/chitosan (CS) composite nanofibers were prepared to mimic extracellular matrix by electrospinning with hexafluoroisopropanol (HFIP) as a solvent. The viscosity and conductivity of TSF/CS blend solution were analyzed and the morphology, secondary structure, and thermal property of TSF/CS composite fibers were investigated by SEM, 13C CP/MAS-NMR, X-ray diffraction, and DSC Techniques. The electrospinnability of TSF solution was improved significantly by adding 10 wt% CS, and morphology of electrospun TSF nanofibers changed from flat strip to cylindrical. At the same time, the average fiber diameters decreased from 542 to 312 nm, accompanying by an obvious improvement in fiber diameter uniformity. However, when the CS content in blend solution was more than 15 wt%, the diameter of electrospun TSF/CS nanofibers appeared to be polarized which can be attributed to phase separation of the two components in composite nanofibers. Blending 10 wt% CS did not change the conformation of TSF in TSF/CS composite nanofibers, and TSF in composite nanofibers at various composition ratios had mainly taken the α-helix structure. The thermal decomposition temperature of electrospun TSF/CS composite nanofibers decreased with the increase of CS content due to the lower decomposition temperature of CS. To study the cytocompatibility and cell behavior on the TSF/CS nanofibers, human renal mesangial cells were seeded onto electrospun TSF/CS composite nanofibers. Results indicated that the addition of CS promoted cell attachment and spreading on TSF nanofibers significantly, suggesting that electrospun TSF/CS composite nanofibers could be a candidate scaffold for tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.