Abstract
Bacterial polyesters have attracted much attention as biodegradable biocompatible polymers. Poly-3-hydroxybutyrate, a microbially produced thermoplastic, has similar material properties to polypropylene. Its potential application as biodegradable and biocompatible plastics is well documented. However, due to high cost it is used mainly in biomaterials for medical applications. Materials with useful properties may result from blending bacterial polyhydroxybutyrate (PHB) with other polymers. In this paper, the compatibility of PHB with starch for improved properties and cost reduction is discussed. The thermal and mechanical properties of the blended films were studied by means of thermogravimetry, differential scanning calorimetry and an automated material testing system. The results revealed that blend films had a single glass transition temperature for all the proportions of PHB:starch tested. The nature of all combinations was found to be crystalline. The tensile strength was optimum for the PHB:starch ratio of 0.7:0.3 (wt/wt). The variation in tensile strength, Young's modulus, extension needed to break, thermal stability, glass transition temperature, melting temperature, for the different proportions of PHB:starch are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.