Abstract

A styrene/divinylbenzene copolymer has been used as precursor for making porous carbons with bimodal pore size distributions (i.e., with both microporosity and mesoporosity). Pretreatment of the as-received copolymer by mild oxidation in air, significantly increased the carbon yield after carbonization. Reactivity studies of the polymer-based chars to CO2 clearly show the influences of some important factors such as carbonization temperature, heating rate, soak time on char reactivities. Bimodal porous carbons were prepared by carbonization of the preoxidized styrene/divinylbenzene copolymer in N2, followed by activation in CO2 at different temperatures to different levels of burnoff. The pore structures of the porous carbons produced have been characterized by various techniques such as gas adsorption and mercury porosimetry. The surfaces of the porous carbons produced, and a commercial carbon adsorbent, have been modified with HNO3 and H2O2 treatment at various conditions. Characterization of the surface oxygen functionality, both quantitatively and qualitatively, has been achieved using techniques such as Linear Temperature Programed Desorption (LTPD) and selective neutralization of bases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call