Abstract

Adenosine triphosphate (ATP) is known as an energy source and is generated by mitochondria which is the powerhouse of the cell. The ATP supplies energy through the disassociation of the phosphate group by the cellular enzymes. The extracellular ATP in the extracellular environment acts as a signaling molecule and can act as an anti-inflammatory molecule, can promote cancer progression, and also can act as a pro-inflammatory molecule. The degradation of ATP is a major disadvantage by ectonucleotidases that attenuates the therapeutic property of ATP in the extracellular environment. We have formulated chitosan/alginate nanoparticles loaded with ATP for increasing their encapsulation efficiency and for sustained drug release. This encapsulation can avoid ATP degradation from ectonucleotidases. Nanoparticle characterization by DLS, FTIR, SEM, encapsulation efficiency, and cytotoxicity assay by XTT assay and Live-dead assay was monitored for the synthesized nano formulated ATP. Our results showed that the formulated ATP-loaded chitosan/alginate nanoparticle sized about 342 nm with the optimum encapsulation efficiency of about 92.03% with a sustained drug release profile. These nano formulated ATP could be used for calorie restriction conditions where ATP can be supplied as an extracellular source for bypassing oxidative phosphorylation, and we can circumvent the oxidant production during oxidative phosphorylation. The concept of avoiding oxidative stress by bypassing oxidative phosphorylation can open an avenue for healthy aging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call