Abstract

Objective The goals of this study were to (1) delineate a technique to prepare stable aqueous vitamin E/Soluplus® dispersions; (2) characterize films cast from the aqueous dispersions; and (3) demonstrate the utility of the aqueous dispersions in fluid bed coating applications. This study demonstrated the feasibility of using vitamin E in the preparation of amphiphilic film withs potential use in delayed-release coating applications. Methods Low viscosity aqueous vitamin E/Soluplus® dispersions were prepared by first spray drying ethanolic vitamin E/Soluplus® solutions followed by high-shear homogenization of the solid dispersions in water. Concentrated (10%) aqueous dispersions containing 0%, 10%, 20%, and 30% of vitamin E in the binary blend with Soluplus® were then cast into films and characterized for contact angle and mechanical strength by texture analysis. Results All films were hydrophilic and homogenous, which confirmed the utility of vitamin E as a plasticizer for the Soluplus® polymer. The 0% and 10% films were brittle whereas the 30% were tacky. The 20% dispersion was subsequently used to coat acetaminophen granules by a fluidized bed process to a dry weight gain of 10–30%. When tested by a dissolution study, a delay in acetaminophen release was observed as a function of weight gain. Conclusion The results from this study demonstrated that it is feasible to produce stable vitamin E/Soluplus® aqueous dispersions to be used as solvent-free functional film coating materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.