Abstract

An ECL sensor was fabricated by immobilization of a tris(2,2'-bipyridyl)ruthenium (II) complex (Ru(bpy)3(2+)) to an amine group-modified GC electrode (NH2-GC electrode). Here, the NH2-GC electrode was prepared by electrochemical reduction of a nitro group-modified GC electrode in 0.1 M KCl ethanol solution under H2 gas, which was followed by electrochemical grafting of 4-nitrophenyl diazonium salts in 0.1 M NBu4BF4 acetonitrile solution onto the GC electrode. The prepared ECL sensor was successfully confirmed via cyclic voltammetry, contact angle, scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and ECL spectrometry. The contact angle for the surface of the GC electrode, NO2-GC electrode, and NH2-GC electrod was 88.4 degrees, 67.4 degrees, and 52.4 degrees, respectively. The stability of the ECL sensor was investigated under continuous cyclic potential scanning for 55 cycles and the ECL intensity remained at 55%. The prepared ECL electrode can be expected to immobilize enzymes for preparation of the ECL biosensor to detect target molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.