Abstract

Agar-based active nanocomposite films were prepared by incorporating silver-copper (Ag-Cu) alloy nanoparticles (NPs) (0.5–4wt%) into glycerol plasticized agar solution. Thermo-mechanical, morphological, structural, and optical properties of the nanocomposite films were characterized by texture analyzer, differential scanning calorimetry (DSC), scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transforms infrared (FTIR) spectroscopy, and surface color measurement. Tensile strength and the melting temperature of the film increased linearly with NPs loading concentration. Color, transparency and UV barrier properties of agar films were influenced by the reinforcement of Ag-Cu NPs. XRD analysis confirmed the crystalline structure of the Agar/Ag-Cu nanocomposite films, whereas the smoothness and the homogeneity of film surface strongly reduced as observed through the SEM. The nanocomposite films exhibited a profound antibacterial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Salmonella enterica sv typhimurium) bacteria. Overall, the agar nanocomposite films could be used as packaging material for food preservation by controlling foodborne pathogens and spoilage bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call