Abstract

This study aims to remove oxytetracycline (OTC) that harms the ecosystem, with activated carbon (LPAC) obtained from Lemon Pulp (LP). Characterization and properties of LPAC were analyzed by Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD) and point of zero charge (pHPZC) analyses. BET surface area, pore volume and pHPZC of LPAC produced by carbonization at 400°C and activation with KOH at 800°C were obtained as 1333.01 m2/g, 0.391 cm3/g, and 6.81, respectively. pH, reaction time, initial OTC concentration, and adsorbent amounts were optimized in the adsorption study performed with LPAC with high porosity and micropores. Kinetic evaluation was made with pseudo-first-order, pseudo-second-order, and intra-particle diffusion models and Freundlich, Langmuir, and Temkin equations are used to investigate their isotherms under reaction equilibrium conditions, and also the results were analyzed by statistical method (ANOVA). In pseudo-second-order kinetic and Freundlich isotherm models, where the best results were obtained, R2 values were calculated as 0.999 and 0.995, respectively. Maximum OTC removal efficiency was found as 104.22mg/g. Overall, this research indicates that LPAC for the treatment of water contaminated with antibiotics is environmentally friendly green material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.