Abstract

Hydrochar was used to produce activated carbon with high BET surface area and large pore volume via phosphoric acid activation. The hydrochar described here can be obtained from hydrothermal carbonization of corn cob residue (CCR). Porous structure of activated carbons was characterized by nitrogen adsorption and scanning electron microscopy (SEM). Results showed that the specific surface area and total pore volume of activated carbon were increased to 2192 m2/g and 1.269 cm3/g, respectively, under conditions of 400 °C, 1 h, and an impregnation ratio of 3, from 5.69 m2/g and 0.136 cm3/g of the starting material. The chemical properties of hydrochar and activated carbons were further characterized by Fourier transform infrared spectroscopy (FT-IR), which confirmed the chemical transformation. Furthermore, the localized graphitic nature of the porous carbon was shown by the X-ray diffraction pattern. Thus, the adsorption capacity was enhanced for activated carbon in comparison with commercial carbon. The process of activated carbon preparation provided a high value-added application of hydrochar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call