Abstract
Eucalyptus sawdust was used as a precursor to prepare activated carbon using NaOH as a chemical activation agent. The effect of preparation conditions on the characteristics of the produced activated carbon used as an adsorbent was investigated. The performance of the activated carbon was characterized by N2 adsorption–desorption isotherms, Brunauer–Emmett–Teller equation, Barett–Joyner–Halenda equation, scanning electron microscopy and Fourier transform infrared analysis. When the eucalyptus sawdust mass was 30.00 g, with particle sizes between 0.25 and 0.42 mm, and the sawdust was heated and charred before activation by NaOH, the optimized conditions for the preparation of activated carbon was found to be as follows: mass ratio of NaOH to eucalyptus sawdust, 1:2; activation time, 30 min; and activation temperature, 700 °C. The Iodine number and BET surface area of the produced activated carbon was 899 and 1.12 × 103 m2 g−1, respectively, with a 13.3 % yield. Activated carbon exhibits adsorption isotherms of type IV. The total pore volume, micropore volume and average pore diameter were recorded as 0.636, 0.160 cm3 g−1 and 2.27 nm, respectively. The pore structure of the activated carbon is mainly mesoporous. Carbonyl and hydroxyl groups may also exist on the activated carbon surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Inorganic and Organometallic Polymers and Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.