Abstract

AbstractThe feasibility of using bacterial cellulose as a source for environmentally compatible ion‐exchange membranes (IEM) was studied. Bacterial cellulose was modified with cation‐exchangeable acrylic acid (AAc) by UV‐graft polymerization to prepare membranes having ion‐exchange capacity (IEC) and greater structural density. Fourier transform infrared (FTIR) spectra showed that acrylic acids were successfully bound to bacterial cellulose. Morphological changes of acrylic acid‐treated bacterial cellulose were examined through scanning electron microscopy. A dense structure of the membrane increased with increasing UV‐irradiation time. Acrylic‐modified bacterial cellulose membrane showed reasonable mechanical properties, such as tensile strength of 12 MPa and elongation of 6.0%. Also the prepared membranes were comparable to the commercial membrane CMX in terms of the electrochemical properties, ie IEC of 2.5 meq g−1‐dry mem, membrane electric resistance of 3 ohm cm2, and transport number of 0.89. Copyright © 2003 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.