Abstract

ABSTRACT Objective Impetigo is a common and highly contagious bacterial skin infection that mostly affects young children and infants. Herein, we report the development of a thermosensitive and bioadhesive in-situ hydrogel-forming system containing cephalexin-loaded nanoparticles (NPs) suitable for antibacterial drug delivery. Methods The nanohydrogel was formulated using drug-loaded NPs and characterized by its physicochemical characteristics. Antibacterial activities of the cephalexin NPs and nanohydrogel were examined in vitro against Staphylococcus aureus (S. aureus). The ex vivo drug permeation study was performed using rat skin. Finally, this formulation was tested for in vivo antibacterial activity using superficial skin infections in rats. Results The mean size and entrapment efficiency of the NPs were found to be 178 nm and 58%, respectively. The transmission electron microscopy analysis verified the formation of spherical NPs. The drug-loaded NPs showed an enhanced eradication effect against S. aureus according to the declined MIC values in comparison with the untreated drug. The ex vivo permeation profile of the cephalexin nanohydrogel showed a slow release pattern for 8 h. When applied on rat skin for 6 days, the nanohydrogel exhibited a superior antibacterial activity with normal hair growth and skin appearance as compared to the plain drug hydrogel. Conclusions These findings suggested that the nanohydrogel could serve as a valuable drug delivery platform against superficial bacterial infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call