Abstract

Silica particles having different sizes were synthesized by a modified Stöber method. The reaction temperature, stirring rate, and time conditions were optimized. Finally, 580 nm monodispersed silica particles were synthesized. Moreover, a novel zwitterionic stationary phase with strong hydrophilicity was prepared based on a "thiolene" click reaction between cysteine and the silica particles modified vinyl group (Cys-vinyltrichlorosilane (VTMS)-SiO2). A column packed with submicron cysteine-bonded silica was prepared by the slurry packing method. The hydrophilic mechanism was revealed by the separation of toluene, acrylamide, and thiourea using different ratios of acetonitrile. The effects of applied voltage, buffer concentration, and buffer pH on the separation ability of the capillary column packed with 580 nm Cys-VTMS-SiO2 were examined to achieve optimal results. In addition, the run-to-run and day-to-day reproducibilities in terms of retention time and peak area for the above mentioned compounds were both 2.0%. The good batch-to-batch reproducibility indicated that the preparation method was suitable for the fabricated column. The column used in the pressurized capillary electrochromatography (pCEC) system demonstrated efficient and fast separation of a mixture consisting of nucleosides, phenols, amines, and peptides after the optimization of the separation condition. The proposed method shows good potential for the separation of polar and hydrophilic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.