Abstract
At the tendon-to-bone insertion, there is a unique transitional structure: tendon, non-calcified fibrocartilage, calcified fibrocartilage, and bone. The reconstruction of this special graded structure after defects or damage is an important but challenging task in orthopedics. In particular, reconstruction of the fibrocartilage zone has yet to be successfully achieved. In this study, the development of a novel book-shape scaffold derived from the extracellular matrix of fibrocartilage was reported. Specifically, fibrocartilage from the pubic symphysis was obtained from rabbits and sliced into the shape of a book (dimensions: 10 mm × 3 mm × 1 mm) with 10 layers, each layer (akin to a page of a book) with a thickness of 100-μm. These fibrocartilage “book” scaffolds were decellularized using sequentially 3 freeze-thaw cycles, 0.1% Triton X-100 with 1.5 M KCl, 0.25% trypsin, and a nuclease. Histology and DNA quantification analysis confirmed substantial removal of cells from the fibrocartilage scaffolds. Furthermore, the quantities of DNA, collagen, and glycosaminoglycan in the fibrocartilage were markedly reduced following decellularization. Scanning electron microscopy confirmed that the intrinsic ultrastructure of the fibrocartilage tissue was well preserved. Therefore, the results of this study suggest that the novel “book” fibrocartilage scaffold could have potential applications in tissue engineering.
Highlights
At the tendon-to-bone insertion, there is a physiologically unique transitional fibrocartilage zone, with calcified collagen fibers connecting to the bone and non-calcified collagen fibers connecting to the tendon
Because of incomplete regeneration of the original characteristic fibrocartilage zone between the tendon and bone, it is possible that the resultant tendon—bone junction may not be able to transfer load efficiently between the soft and hard tissues, which can lead to re-tearing or failure to heal [4,5,6]
The results of the current study provide a strong foundation for the production of a new three-phased multilayered decellularized “book” scaffold, which will include bone, cartilage, and tendon, and into which mesenchymal stem cells can be implanted and cultured
Summary
At the tendon-to-bone insertion, there is a physiologically unique transitional fibrocartilage zone, with calcified collagen fibers connecting to the bone and non-calcified collagen fibers connecting to the tendon. This graded transitional construction is formed under physiological loading conditions and is closely related to its mechanical properties [1,2,3]. Because of incomplete regeneration of the original characteristic fibrocartilage zone between the tendon and bone, it is possible that the resultant tendon—bone junction may not be able to transfer load efficiently between the soft and hard tissues, which can lead to re-tearing or failure to heal [4,5,6]. To date, the graded transitional structure has yet to be successfully reconstructed [6, 7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.